371 research outputs found

    Pencil beam characteristics of the next-generation proton scanning gantry of PSI: design issues and initial commissioning results

    Get PDF
    In this paper we report on the main design features, on the realization process and on selected first results of the initial commissioning of the new Gantry 2 of PSI for the delivery of proton therapy with new advanced pencil beam scanning techniques. We present briefly the characteristics of the new gantry system with main emphasis on the beam optics, on the characterization of the pencil beam used for scanning and on the performance of the scanning system. The idea is to give an overview of the major components of the whole system. The main long-term technical goal of the new equipment of Gantry 2 is to expand the use of pencil beam scanning to the whole spectrum of clinical indications including moving targets. We report here on the initial experience and problems encountered in the development of the system with selected preliminary results of the ongoing commissioning of Gantry

    Impact of loss of high-molecular-weight von Willebrand factor multimers on blood loss after aortic valve replacement

    Get PDF
    Background Severe aortic stenosis is associated with loss of the largest von Willebrand factor (vWF) multimers, which could affect primary haemostasis. We hypothesized that the altered multimer structure with the loss of the largest multimers increases postoperative bleeding in patients undergoing aortic valve replacement. Methods We prospectively included 60 subjects with severe aortic stenosis. Before and after aortic valve replacement, vWF antigen, activity, and multimer structure were determined and platelet function was measured by impedance aggregometry. Blood loss from mediastinal drainage and the use of blood and haemostatic products were evaluated perioperatively. Results Before operation, the altered multimer structure was present in 48 subjects (80%). Baseline characteristics and laboratory data were similar in all subjects. The median blood loss after 6 h was 250 (105-400) and 145 (85-240) ml in the groups with the altered and normal multimer structures, respectively (P=0.182). After 24 h, the cumulative loss was 495 (270-650) and 375 (310-600) ml in the groups with the altered and normal multimer structures, respectively (P=0.713). Multivariable analysis revealed no significant influence of multimer structure and platelet function on bleeding volumes after 6 and 24 h. After 24 h, there was no obvious difference in vWF antigen, activity, and multimer structure in subjects with and without the altered multimer structure before operation or in subjects with and without perioperative plasma transfusion. Conclusions The altered vWF multimer structure before operation was not associated with increased bleeding after aortic valve replacement. Our findings might be explained by perioperative release of vWF and rapid recovery of the largest vWF multimer

    Structure of silent transcription intervals and noise characteristics of mammalian genes

    Get PDF
    Mammalian transcription occurs stochastically in short bursts interspersed by silent intervals showing a refractory period. However, the underlying processes and consequences on fluctuations in gene products are poorly understood. Here, we use single allele time-lapse recordings in mouse cells to identify minimal models of promoter cycles, which inform on the number and durations of rate-limiting steps responsible for refractory periods. The structure of promoter cycles is gene specific and independent of genomic location. Typically, five rate-limiting steps underlie the silent periods of endogenous promoters, while minimal synthetic promoters exhibit only one. Strikingly, endogenous or synthetic promoters with TATA boxes show simplified two-state promoter cycles. Since transcriptional bursting constrains intrinsic noise depending on the number of promoter steps, this explains why TATA box genes display increased intrinsic noise genome-wide in mammals, as revealed by single-cell RNA-seq. These findings have implications for basic transcription biology and shed light on interpreting single-cell RNA-counting experiments

    Effect of promoter architecture on the cell-to-cell variability in gene expression

    Get PDF
    According to recent experimental evidence, the architecture of a promoter, defined as the number, strength and regulatory role of the operators that control the promoter, plays a major role in determining the level of cell-to-cell variability in gene expression. These quantitative experiments call for a corresponding modeling effort that addresses the question of how changes in promoter architecture affect noise in gene expression in a systematic rather than case-by-case fashion. In this article, we make such a systematic investigation, based on a simple microscopic model of gene regulation that incorporates stochastic effects. In particular, we show how operator strength and operator multiplicity affect this variability. We examine different modes of transcription factor binding to complex promoters (cooperative, independent, simultaneous) and how each of these affects the level of variability in transcription product from cell-to-cell. We propose that direct comparison between in vivo single-cell experiments and theoretical predictions for the moments of the probability distribution of mRNA number per cell can discriminate between different kinetic models of gene regulation.Comment: 35 pages, 6 figures, Submitte

    The Integrated Genomic Landscape of Thymic Epithelial Tumors

    Get PDF
    Thymic epithelial tumors (TETs) are one of the rarest adult malignancies. Among TETs, thymoma is the most predominant, characterized by a unique association with autoimmune diseases, followed by thymic carcinoma, which is less common but more clinically aggressive. Using multi-platform omics analyses on 117 TETs, we define four subtypes of these tumors defined by genomic hallmarks and an association with survival and World Health Organization histological subtype. We further demonstrate a marked prevalence of a thymoma-specific mutated oncogene, GTF2I, and explore its biological effects on multi-platform analysis. We further observe enrichment of mutations in HRAS, NRAS, and TP53. Last, we identify a molecular link between thymoma and the autoimmune disease myasthenia gravis, characterized by tumoral overexpression of muscle autoantigens, and increased aneuploidy

    Cell-cycle-dependent transcriptional and translational DNA-damage response of 2 ribonucleotide reductase genes in S. cerevisiae

    Get PDF
    The ribonucleotide reductase (RNR) enzyme catalyzes an essential step in the production of deoxyribonucleotide triphosphates (dNTPs) in cells. Bulk biochemical measurements in synchronized Saccharomyces cerevisiae cells suggest that RNR mRNA production is maximal in late G1 and S phases; however, damaged DNA induces RNR transcription throughout the cell cycle. But such en masse measurements reveal neither cell-to-cell heterogeneity in responses nor direct correlations between transcript and protein expression or localization in single cells which may be central to function. We overcame these limitations by simultaneous detection of single RNR transcripts and also Rnr proteins in the same individual asynchronous S. cerevisiae cells, with and without DNA damage by methyl methanesulfonate (MMS). Surprisingly, RNR subunit mRNA levels were comparably low in both damaged and undamaged G1 cells and highly induced in damaged S/G2 cells. Transcript numbers became correlated with both protein levels and localization only upon DNA damage in a cell cycle-dependent manner. Further, we showed that the differential RNR response to DNA damage correlated with variable Mec1 kinase activity in the cell cycle in single cells. The transcription of RNR genes was found to be noisy and non-Poissonian in nature. Our results provide vital insight into cell cycle-dependent RNR regulation under conditions of genotoxic stress.Massachusetts Institute of Technology. Center for Environmental Health Sciences (deriving from NIH P30-ES002109)National Institutes of Health (U.S.) (grant R01-CA055042)National Institutes of Health (U.S.) (grant DP1-OD006422)Massachusetts Institute of Technology (CSBi Merck-MIT Fellowship

    Evaluating Gene Expression Dynamics Using Pairwise RNA FISH Data

    Get PDF
    Recently, a novel approach has been developed to study gene expression in single cells with high time resolution using RNA Fluorescent In Situ Hybridization (FISH). The technique allows individual mRNAs to be counted with high accuracy in wild-type cells, but requires cells to be fixed; thus, each cell provides only a “snapshot” of gene expression. Here we show how and when RNA FISH data on pairs of genes can be used to reconstruct real-time dynamics from a collection of such snapshots. Using maximum-likelihood parameter estimation on synthetically generated, noisy FISH data, we show that dynamical programs of gene expression, such as cycles (e.g., the cell cycle) or switches between discrete states, can be accurately reconstructed. In the limit that mRNAs are produced in short-lived bursts, binary thresholding of the FISH data provides a robust way of reconstructing dynamics. In this regime, prior knowledge of the type of dynamics – cycle versus switch – is generally required and additional constraints, e.g., from triplet FISH measurements, may also be needed to fully constrain all parameters. As a demonstration, we apply the thresholding method to RNA FISH data obtained from single, unsynchronized cells of Saccharomyces cerevisiae. Our results support the existence of metabolic cycles and provide an estimate of global gene-expression noise. The approach to FISH data presented here can be applied in general to reconstruct dynamics from snapshots of pairs of correlated quantities including, for example, protein concentrations obtained from immunofluorescence assays
    corecore